

Abstract –– This paper presents the design and

implementation of a runtime reconfigurable architecture for
Viterbi decoding with a high throughput rate suitable for
Software Defined Radio (SDR). SDR is a radio that is
substantially defined in software and whose physical layer
behavior can be significantly altered through changes to its
software. The architecture can be reconfigured to decode
convolutionally coded data with constraint lengths from 3 to 7
and code rates 1/2 and 1/3. Reconfiguration of the architecture
does not require FPGA reprogramming. With a throughput of
70 Mbps, the proposed decoder is suitable for use in receiver
architectures of 802.11a, 802.16, 3G and GSM.

Keywords ––Reconfigurability, SDR, Viterbi Decoding

I. INTRODUCTION

 Forward Error Correction (FEC) schemes are an
essential component of wireless communication systems.
Typically convolutional codes are employed to implement
FEC but the complexity of corresponding decoders increases
exponentially according to constraint length. Present
wireless standards such as the Third Generation (3G)
systems, GSM, 802.11a and 802.16 utilize some
configuration of convolutional coding. The Viterbi
algorithm [1] is the most widely used technique for
detecting and correcting errors in communication systems
based in convolutional coding and is adequate for data
reception [2].

With the rapid emergence of wireless communications
networks there is a great demand and growing interest in
building devices or systems that can operate on several
wireless standards and gain benefit through reuse of
hardware. This has motivated the design and
implementation of a high speed reconfigurable architecture
with Viterbi Decoding capability, as is proposed in this
paper.

This work is the first stage of a concatenated system (Reed-
Solomon - Convolutional Code). This system is a powerful
combination for correcting errors. The convolutional code is
used to clean up the channel for the Reed-Solomon code,
which in turn corrects the burst errors emerging from the
Viterbi decoder. One proposed application for this kind of
system is the NASA/ESA standard coding scheme for deep
space missions [3] and satellite communications.

II. VITERBI DECODING

 Viterbi decoding is a technique for performing
maximum likelihood sequence detection on data that has
been convolutionally coded. If convolutional encoder
parameters constraint length (K), Code rate (r) and
Generator polynomials (G) of any communication system
are known, then a decoding system can be realized.

The decoding problem is to determine the path with the
minimum path metric (PM) through the trellis, with path
metric being defined as the sum of the branch metrics along
the path.

The complexity of the Viterbi algorithm resides in the
computation of 2K branch metrics (BM) for a constraint
length K at each time stage. In the Trellis diagram, there are
two paths entering each node with a branch metric value at
any stage t (Fig. 1). Thus, state metric computation involves
calculation of two branch metrics per state per node. Fig. 1
shows the characteristic trellis for K=3 and code rate=½.

Figure 1: A typical Trellis

The Viterbi decoding algorithm is composed by the next
stages:

a) Computing of Metrics
b) Add-Compare Select Operation
c) Trace back Operation

In the proposed design, the branch metrics are computed
using the Hamming distance. The Hamming distance
between binary data words c1 and c2, in this case denoted
by BM (c1, c2) is the minimum number of bits that must be
"flipped" to go from one word to the other [4].

A Runtime Reconfigurable Architecture for Viterbi Decoding

Juan Manuel Campos, René Cumplido

Departamento de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)
Luis Enrique Erro #1, Tonantzintla, Puebla, 72840, México

Phone +52 222 2663100 Ext. 8225 E-mail: {jcampos, rcumplido}@ccc.inaoep.mx

Fig. 1 shows a typical trellis, if the Hamming distance is
used to calculate the branch metric between two states then
for example:

BM(n0, n0) = BM(n1, n2)

BM(n1, n0) = BM(n0, n2)

Therefore it is only necessary calculate two BM per
butterfly (one per node).

The next operation in Viterbi decoding is the Add-Compare-
Select (ACS) which takes in two states metrics and two
branch metrics and outputs the survivor path and an updated
path metric at each node in the trellis and stores the updated
path metrics into the path metrics register as input for the
next stage of ACS.

The Survivor Management Unit (SMU) trace back through
the trellis using the survivor paths to produce the output bits.
Since the decoder generates decoded bits in inverse order,
bit swapping is necessary by simply passing all the decoded
bits through a LIFO memory.

The essence of the Viterbi algorithm resides in the
operations ACS and trace back which need to be applied
generally to a large number of nodes. This number of nodes
is depending of constraint length (K).

III. RECONFIGURABLE VITERBI DECODER

ARCHITECTURE

The functional block diagram of the reconfigurable Viterbi
decoder architecture is shown in Fig. 2.

Figure 2: Viterbi Decoder

The architecture has two inputs, the constraint length and
the data convolutionally coded and one output for the
decoded bits. The output is a string of binary data.

Viterbi decoder is composed of five functional blocks:

a) Branch Metric Unit (BMU)
b) Initialize and Route Unit (IRU)
c) Add-Compare-Select Unit (ACSU)
d) Best State Unit (BSU)

a) Branch Metric Unit

The BMU is responsible for calculating 2K branch metrics at
each state of the trellis. Each branch metrics is computed as
the Hamming distance between the received n-bit block and
the actual codeword (ideal received n-bit block). The
inherent symmetry in the trellis can be used to simplify the
architecture of the BMU. This symmetry is used to reduce
the number of path metrics calculations to one per node
irrespective of the constraint length of the code.

The branch metrics are composed by 3 bits, therefore it is
necessary calculate 8 different values of branch metrics and
routing them to the correct ACSU. Although a small routing
unit has to be added. This approach results in a smaller
BMU. When the constraint length is defined, it is possible
routing the correct branch metric to the corresponding
processor.

b) Initialize and Route Unit (IRU)

The IRU initialize the architecture and provides the first
path metrics to the ACSU also is the responsible for routing
the path metrics depending of the constraint length K. This
unit is composed by a ROM memory and multiplexes. The
ROM memory contains 5 initialization vectors that are used
according to the constraint length (K=3...7).

Each ACSU compares 2 path metrics according to (1)

n+1 (1)

Where
n: Node bases to compare

E.g. If n=0 (this is the node 0) then the path metric of node 0
is compared with the path metric of node 0+1 (node 1) and
the path metric of node 2 with the path metric of node 2+1
(node 3). In the architecture, routing operation is completely
defined by (1)

c) Add-Compare-Select Unit (ACSU)

This unit executes the special purpose computation called
Add-Compare-Select. The architecture of the ACSU is
composed by 16 processors (Fig 3). Every processor
computes 4 Butterfly or 8 nodes. Data are received from the
IRU, processed (by the ACSU) and returned to the IRU.

A fully parallel scheme is selected to implement the ACSU.
High throughputs are possible by using a fully parallel
scheme.

BMU

ACSU

BSU

SMU

IRU

Decoded
Bits

K
Selection

Coded
Symbols

The number of used processors depends on the constraint
length K (2).

Number_of_Processors_used = 2K-3 (2)

Figure 3: Add-Compare-Select-Unit (ACSU)

In turn, every processor includes 4 BC (Fig 4). Every BC
takes in the path metrics from the IRU PM(n) and PM(n+1)
The two candidates are compared and the smallest distance
of the two path metrics is stored as the winning path metric,
then every corresponding new path metric is calculated by
adding the winning path metric and the corresponding
branch metric.

Figure 4: Basic Cell (BC)

Each surviving bit represents an individual node in the trellis
diagram; therefore every BC processes a whole butterfly and
generates two new path metrics. This novel configuration
allows processing a whole butterfly with a minimum
hardware.

d) Best State Unit (BSU)

Since the trace back operation is started from the best state
of the Trellis, the BSU unit compares all the 2K-1 path
metrics of the Trellis and selects the best state.

In the proposed architecture the best state is the state with
the smallest path metric. This operation takes K clock cycles
therefore this operation is begun K clock cycles before the
beginning of the trace back operation.

e) Survivor Management Unit (SMU)

There are two hardware approaches for survivor
management, namely register exchange and trace back [5].
We chose the trace back method over register exchange
because the trace back is more suitable for reconfiguration
purposes [6].

This unit finds the correct decoded data using the survivor
bits generated by the ACSU. It consists of two survivor
memory blocks, and a controller.

Figure 5: Survivor Memory Blocks

Two memory blocks are used (Fig 5). While memory block
1 is written, memory block 2 is read (t1). During the next
stage (t2) memory block 2 is written when memory block 1
is read. This allows having a continuous flow of data out.

To write data in memory at the same time, data are
concatenated in a single binary string and stored in a
memory location, after this location is read and the data are
separate to get the original information.

IV. RESULTS

The proposed reconfigurable architecture was modeled and
simulated in Simulink V 6.0 R14 with Xilinx’s System
Generator. The target device to implementation is a Xilinx
xc4vlx1000-10ff1513. The decoder uses 175k logic gates
and 21kbits of memory for the trace back operation and the
initialization of the architecture.

We verify that sequences of decoded bits are reconstructed
in a continue flow after 25 cycles of initialization when
reconfigurability options are established. Changing the
constraint length (K) in runtime takes 2K cycles. At a clock
frequency of 70.02 MHz a throughout of 70.02 Mbps is
achieved independently of the constraint length (K).

BM(n, k-2-n)

Select

Compare

PM(n)
BM(n, k-2+n)

Surviving
bit 1

NOT Surviving
bit 0

P0

P1

P2

P15

I R U

ACSU

t2

2K-1
Positions

2K-1
Positions

t1

Memory
Bolck 1

Memory
Block 2

Reading (Trace back)
Writing

 PM(n+1)

Adder

Adder

PM(n)

PM(n+1)

 If the configuration of the decoder is changed to work with
a scheme of packets instead of a streaming one, at a clock
frequency of 70.02 MHz a throughout of 43 Mbps is
achieved independently of the constraint length (K). Each
sequence contains 32 decoded bits and it is produced every
57 cycles.

Several architectures for Viterbi decoder have been
reported. Due to the characteristics of the presented
architecture a comparison is possible with the next works.

In [6] a decoder (VITURBO) for constraint lengths 3 to 9
and code rates 1/2 and 1/3 is reported. A throughput rate of
60.5 Mbps is achieved with this implementation. Like the
proposed architecture, this design realizes fully parallel
scheme, where every trellis node is computed with a
dedicated ACSU. Utilization of over 190k logic gates and
about 327kbits of memory is reported.

In [7] an adaptive Viterbi decoding algorithm is used. Two
implementations for constraint length K=4 to 9 and K=10 to
14 are reported. These implementations are based in a fully
parallel scheme but very low throughput rates are achieved.
Uses of memory resources are not mentioned.

In [8] a “Reconfigurable Viterbi for Mobile Platforms” for
constraint lengths 7 and 9 and code rate 1/2 is reported. A
throughput of 3.125 Mbps and 12.5 Mbps is achieved for
K=9 an K=7 respectively. They report using 1314 logic
elements and 35072 memory bits.

In [9] a reconfigurable Viterbi decoder architecture is
presented for constraint length from 3 to 7. It uses a packet
scheme achieving a throughput of 20 Mbps with an
utilization of 89.5k logic gates.

TABLE 1
Comparison of reported architectures

Constraint

length
supported

Throughput
Max.

Area
(Logic
Gates)

Memory
Resources

(Kbits)
Proposed

Architecture 3-7 70 Mbps 175k 21

[6] 3-9 60.5 Mbps 190k 327

[7] 4-9 333.7 Kbps 65k -

[8] 7,9 12.5 Mbps 95k 35

[9] 3-7 20 Mbps 89.5k -

TABLE 1 shows a comparison of key features with
architectures previously reported. The architecture [6]
presents high throughput but an excessive use of memory
resources. The architecture in [7] presents a compact size
but very low throughput. In [8] good management of
memory resources is presented but low throughput is
achieved. In [9] compact size is presented but low
throughput is achieved in a packet scheme based.

V. CONCLUSIONS

In this paper a flexible runtime reconfigurable architecture
for Viterbi decoder suitable for use in receiver architectures
of 802.11a, 802.16, 3G and GSM was presented. The
architecture is based in a fully parallel scheme and thus
suitable for very high data rate decoding. The proposed
architecture presents a high throughput of 70.02 Mbps and a
low use of memory resources (21 Kbits).

The proposed architecture is easily scalable to other
constraint lengths without diminishing the speed. The main
contribution of this work is the novel and compact
implementation of the Basic Cell to perform the Add-
Compare-Select operation. This is possible thanks to the
special branch metric calculation. The use of this compact
ACSU allows having a small architecture and achieving
high throughputs. Future work involves exploring
techniques to reduce the power consumption, an important
factor in mobile platforms. Power saving techniques ensures
that the architecture is feasible for mobile devices.

REFERENCES

[1] J. G Proakis. “Digital Communications”. McGraw-Hill, New York,
NY, fourth ed., 2001.

[2] G. D. Forney, Jr. “The Viterbi Algorithm”, Proceedings of The IEEE

vol 61, pp. “268-278, Mar. 1978.

[3] S. Wicker, V. Bhargava. “Reed-Solomon Codes and their

Applications” IEEE Press. 1994. ch 11.pp 242-260.

[4] A.Houghton. “The Engineer’s Error Coding Handbook”.Chapman &

Hall, Great Britin, 1997, Ch 1, 3-6.

[5] R. Cypher and C.B. Chung. “Generalized Trace back techniques for

Survivor Memory management in the Viterbi Algorithm” In
GLOBECOM, Dec. 1990.

[6] J. Cavallaro, M. Vaya, “VITURBO: A Reconfigurable Architecture

for Viterbi and Turbo Decoding”, ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing 2003 –
Proceedings 2, 497-500.

[7] S. Swaminathan, R. Tessier, D. Goeckel, W. Burlesson. “A

Dinamically Reconfigurable Adaptive Viterbi Decoder”. Proceedings
of the 2002 ACM/SIGDA Thenth International Symposium on Field
Programmable Gate Arrays , 227-236.

[8] R. Rasheed, A. Menouni, R. Pacalet.

”Reconfigurable Viterbi Decoder for mobile platform”
MWCN 2005, 7th IFIP International Conference on Mobile and
Wireless Communications Networks, September, 19-21, 2005-
Marrakech, Morocco.

[9] K. Chadha, J. Cavallaro, “A Reconfigurable Viterbi Decoder

Architecture”, Conference Record of the Asilomar Conference on
Signals, Systems and Computers 2001. Vol.1, 66-71.

	Menu
	Message from the conference chair
	Message from head of the EED
	Committee
	Organizing Committee
	Topic Chairs
	Oral Sessions Chairs
	Reviewers
	Special Thanks

	Keynote Speakers
	Program
	Technical Program
	Oral Sessions
	Keynote Speakers
	Courses
	Abstract Book
	Author Index
	Cartel
	Brochure

	Sponsors
	Electrical Engineering Department
	Technical Support Information

	log:
	tit: 2006 3rd International Conference on Electrical and Electronics Engineering (ICEEE 2006)
	day: Veracruz, Veracruz, Mexico. September 6-8, 2006
	isbn: IEEE Catalog Number: 06EX1386
	cop: ISBN: 1-4244-0403-7
	lib: Library of Congress: 2006925539
	ccc: 1-4244-0403-7/06/$20.00 ©2006 IEEE.
	cie:
	382: 382
	383: 383
	384: 384
	385: 385

