
 

  
Abstract –– This paper presents the design and 

implementation of a runtime reconfigurable architecture for 
Viterbi decoding with a high throughput rate suitable for 
Software Defined Radio (SDR). SDR is a radio that is 
substantially defined in software and whose physical layer 
behavior can be significantly altered through changes to its 
software. The architecture can be reconfigured to decode 
convolutionally coded data with constraint lengths from 3 to 7 
and code rates 1/2 and 1/3.  Reconfiguration of the architecture 
does not require FPGA reprogramming.  With a throughput of 
70 Mbps, the proposed decoder is suitable for use in receiver 
architectures of 802.11a, 802.16, 3G and GSM.  
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I.  INTRODUCTION 
 
  Forward Error Correction (FEC) schemes are an 
essential component of wireless communication systems. 
Typically convolutional codes are employed to implement 
FEC but the complexity of corresponding decoders increases 
exponentially according to constraint length. Present 
wireless standards such as the Third Generation (3G) 
systems, GSM, 802.11a and 802.16 utilize some 
configuration of convolutional coding. The Viterbi 
algorithm [1] is the most widely used technique for 
detecting and correcting errors in communication systems 
based in convolutional coding and is adequate for data 
reception [2]. 
  
With the rapid emergence of wireless communications 
networks there is a great demand and growing interest in 
building devices or systems that can operate on several 
wireless standards and gain benefit through reuse of 
hardware. This has motivated the design and 
implementation of a high speed reconfigurable architecture 
with Viterbi Decoding capability, as is proposed in this 
paper. 
 
This work is the first stage of a concatenated system (Reed-
Solomon - Convolutional Code). This system is a powerful 
combination for correcting errors. The convolutional code is 
used to clean up the channel for the Reed-Solomon code, 
which in turn corrects the burst errors emerging from the 
Viterbi decoder. One proposed application for this kind of 
system is the NASA/ESA standard coding scheme for deep 
space missions [3] and satellite communications. 

 
II. VITERBI DECODING 

 
 Viterbi decoding is a technique for performing 
maximum likelihood sequence detection on data that has 
been convolutionally coded.  If convolutional encoder 
parameters constraint length (K), Code rate (r) and 
Generator polynomials (G) of any communication system 
are known, then a decoding system can be realized. 
 
The decoding problem is to determine the path with the 
minimum path metric (PM) through the trellis, with path 
metric being defined as the sum of the branch metrics along 
the path.  
 
The complexity of the Viterbi algorithm resides in the 
computation of 2K branch metrics (BM) for a constraint 
length K at each time stage. In the Trellis diagram, there are 
two paths entering each node with a branch metric value at 
any stage t (Fig. 1). Thus, state metric computation involves 
calculation of two branch metrics per state per node. Fig. 1 
shows the characteristic trellis for K=3 and code rate=½. 

 
 

Figure 1: A typical Trellis 
 

The Viterbi decoding algorithm is composed by the next 
stages: 
 
a) Computing of Metrics 
b) Add-Compare Select Operation 
c) Trace back Operation 
 
In the proposed design, the branch metrics are computed 
using the Hamming distance. The Hamming distance 
between binary data words c1 and c2, in this case denoted 
by BM (c1, c2) is the minimum number of bits that must be 
"flipped" to go from one word to the other [4].  
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Fig. 1 shows a typical trellis, if the Hamming distance is 
used to calculate the branch metric between two states then 
for example: 

BM(n0, n0) = BM(n1, n2)  
 

BM(n1, n0) = BM(n0, n2) 

 

Therefore it is only necessary calculate two BM per 
butterfly (one per node). 
 
The next operation in Viterbi decoding is the Add-Compare-
Select (ACS) which takes in two states metrics and two 
branch metrics and outputs the survivor path and an updated 
path metric at each node in the trellis and stores the updated 
path metrics into the path metrics register as input for the 
next stage of ACS.  
 
The Survivor Management Unit (SMU) trace back through 
the trellis using the survivor paths to produce the output bits. 
Since the decoder generates decoded bits in inverse order, 
bit swapping is necessary by simply passing all the decoded 
bits through a LIFO memory. 
 
The essence of the Viterbi algorithm resides in the 
operations ACS and trace back which need to be applied 
generally to a large number of nodes. This number of nodes 
is depending of constraint length (K). 
 

 
III. RECONFIGURABLE VITERBI DECODER 

ARCHITECTURE 
 

The functional block diagram of the reconfigurable Viterbi 
decoder architecture is shown in Fig. 2. 
 

 
Figure 2: Viterbi Decoder 

 
The architecture has two inputs, the constraint length and 
the data convolutionally coded and one output for the 
decoded bits. The output is a string of binary data. 
 
Viterbi decoder is composed of five functional blocks: 
 

a) Branch Metric Unit (BMU) 
b) Initialize and Route Unit (IRU) 
c) Add-Compare-Select Unit (ACSU) 
d) Best State Unit (BSU) 

a) Branch Metric Unit    
 
The BMU is responsible for calculating 2K branch metrics at 
each state of the trellis. Each branch metrics is computed as 
the Hamming distance between the received n-bit block and 
the actual codeword (ideal received n-bit block). The 
inherent symmetry in the trellis can be used to simplify the 
architecture of the BMU. This symmetry is used to reduce 
the number of path metrics calculations to one per node 
irrespective of the constraint length of the code. 
 
The branch metrics are composed by 3 bits, therefore it is 
necessary calculate 8 different values of branch metrics and 
routing them to the correct ACSU. Although a small routing 
unit has to be added. This approach results in a smaller 
BMU. When the constraint length is defined, it is possible 
routing the correct branch metric to the corresponding 
processor.  
  
b) Initialize and Route Unit (IRU)   
 
The IRU initialize the architecture and provides the first 
path metrics to the ACSU also is the responsible for routing 
the path metrics depending of the constraint length K. This 
unit is composed by a ROM memory and multiplexes.  The 
ROM memory contains 5 initialization vectors that are used 
according to the constraint length (K=3...7). 
 
Each ACSU compares 2 path metrics according to (1) 
 

n+1                                           (1) 
 
Where 
n: Node bases to compare 
 
E.g. If n=0 (this is the node 0) then the path metric of node 0 
is compared with the path metric of node 0+1 (node 1) and 
the path metric of node 2 with the path metric of node 2+1 
(node 3). In the architecture, routing operation is completely 
defined by (1)  
 
c) Add-Compare-Select Unit (ACSU) 
 
This unit executes the special purpose computation called 
Add-Compare-Select. The architecture of the ACSU is 
composed by 16 processors (Fig 3). Every processor 
computes 4 Butterfly or 8 nodes. Data are received from the 
IRU, processed (by the ACSU) and returned to the IRU. 
 
A fully parallel scheme is selected to implement the ACSU. 
High throughputs are possible by using a fully parallel 
scheme.  
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The number of used processors depends on the constraint 
length K (2). 
 

Number_of_Processors_used = 2K-3                 (2) 
       
 

  
 

Figure 3: Add-Compare-Select-Unit (ACSU) 
 
In turn, every processor includes 4 BC (Fig 4). Every BC 
takes in the path metrics from the IRU PM(n) and PM(n+1) 
The two candidates are compared and the smallest distance 
of the two path metrics is stored as the winning path metric, 
then every corresponding new path metric is calculated by 
adding the winning path metric and the corresponding 
branch metric.  
 

 
 

Figure 4: Basic Cell (BC) 
 
Each surviving bit represents an individual node in the trellis 
diagram; therefore every BC processes a whole butterfly and 
generates two new path metrics. This novel configuration 
allows processing a whole butterfly with a minimum 
hardware.  
 
d) Best State Unit (BSU)  
 
Since the trace back operation is started from the best state 
of the Trellis, the BSU unit compares all the 2K-1 path 
metrics of the Trellis and selects the best state.  
 
In the proposed architecture the best state is the state with 
the smallest path metric. This operation takes K clock cycles 
therefore this operation is begun K clock cycles before the 
beginning of the trace back operation. 
 
 

e) Survivor Management Unit (SMU) 
 
There are two hardware approaches for survivor 
management, namely register exchange and trace back [5]. 
We chose the trace back method over register exchange 
because the trace back is more suitable for reconfiguration 
purposes [6]. 
 
This unit finds the correct decoded data using the survivor 
bits generated by the ACSU. It consists of two survivor 
memory blocks, and a controller.  
 

         
 

Figure 5: Survivor Memory Blocks 
 
Two memory blocks are used (Fig 5). While  memory block 
1 is written, memory block 2 is read (t1). During the next 
stage (t2) memory block 2 is written when memory block 1 
is read. This allows having a continuous flow of data out. 
 
To write data in memory at the same time, data are 
concatenated in a single binary string and stored in a 
memory location, after this location is read and the data are 
separate to get the original information. 
 

IV. RESULTS 
 

The proposed reconfigurable architecture was modeled and 
simulated in Simulink V 6.0 R14 with Xilinx’s System 
Generator. The target device to implementation is a Xilinx 
xc4vlx1000-10ff1513. The decoder uses 175k logic gates 
and 21kbits of memory for the trace back operation and the 
initialization of the architecture. 
 
We verify that sequences of decoded bits are reconstructed 
in a continue flow after 25 cycles of initialization when 
reconfigurability options are established. Changing the 
constraint length (K) in runtime takes 2K cycles. At a clock 
frequency of 70.02 MHz a throughout of 70.02 Mbps is 
achieved independently of the constraint length (K). 
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 If the configuration of the decoder is changed to work with 
a scheme of packets instead of a streaming one, at a clock 
frequency of 70.02 MHz a throughout of 43 Mbps is 
achieved independently of the constraint length (K). Each 
sequence contains 32 decoded bits and it is produced every 
57 cycles.  
 
Several architectures for Viterbi decoder have been 
reported. Due to the characteristics of the presented 
architecture a comparison is possible with the next works. 
 
In [6] a decoder (VITURBO) for constraint lengths 3 to 9 
and code rates 1/2 and 1/3 is reported. A throughput rate of 
60.5 Mbps is achieved with this implementation.  Like the 
proposed architecture, this design realizes fully parallel 
scheme, where every trellis node is computed with a 
dedicated ACSU. Utilization of over 190k logic gates and 
about 327kbits of memory is reported.  
 
In [7] an adaptive Viterbi decoding algorithm is used. Two 
implementations for constraint length K=4 to 9 and K=10 to 
14 are reported. These implementations are based in a fully 
parallel scheme but very low throughput rates are achieved. 
Uses of memory resources are not mentioned. 
 
In [8] a “Reconfigurable Viterbi for Mobile Platforms” for 
constraint lengths 7 and 9 and code rate 1/2 is reported. A 
throughput of 3.125 Mbps and 12.5 Mbps is achieved for 
K=9 an K=7 respectively. They report using 1314 logic 
elements and 35072 memory bits.  
 
In [9] a reconfigurable Viterbi decoder architecture is 
presented for constraint length from 3 to 7. It uses a packet 
scheme achieving a throughput of 20 Mbps with an 
utilization of 89.5k logic gates. 
 

TABLE 1 
Comparison of reported architectures 

 

 
Constraint 

length 
supported 

Throughput 
Max. 

Area 
(Logic 
Gates) 

Memory 
Resources 

(Kbits) 
Proposed 

Architecture 3-7 70 Mbps 175k 21 

[6] 3-9 60.5 Mbps 190k 327 

[7] 4-9 333.7 Kbps 65k - 

[8] 7,9 12.5 Mbps 95k 35 

[9] 3-7 20 Mbps 89.5k - 

 
TABLE 1 shows a comparison of key features with 
architectures previously reported. The architecture [6] 
presents high throughput but an excessive use of memory 
resources. The architecture in [7] presents a compact size 
but very low throughput. In [8] good management of 
memory resources is presented but low throughput is 
achieved. In [9] compact size is presented but low 
throughput is achieved in a packet scheme based.  

V.  CONCLUSIONS 
 
In this paper a flexible runtime reconfigurable architecture 
for Viterbi decoder suitable for use in receiver architectures 
of 802.11a, 802.16, 3G and GSM was presented. The 
architecture is based in a fully parallel scheme and thus 
suitable for very high data rate decoding. The proposed 
architecture presents a high throughput of 70.02 Mbps and a 
low use of memory resources (21 Kbits). 
 
The proposed architecture is easily scalable to other 
constraint lengths without diminishing the speed. The main 
contribution of this work is the novel and compact 
implementation of the Basic Cell to perform the Add-
Compare-Select operation. This is possible thanks to the 
special branch metric calculation. The use of this compact 
ACSU allows having a small architecture and achieving 
high throughputs. Future work involves exploring 
techniques to reduce the power consumption, an important 
factor in mobile platforms. Power saving techniques ensures 
that the architecture is feasible for mobile devices. 
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